3.11.58 \(\int \frac {(a+b x^4)^{5/4}}{x^3} \, dx\) [1058]

Optimal. Leaf size=98 \[ \frac {5}{6} b x^2 \sqrt [4]{a+b x^4}-\frac {\left (a+b x^4\right )^{5/4}}{2 x^2}+\frac {5 a^{3/2} \sqrt {b} \left (1+\frac {b x^4}{a}\right )^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{6 \left (a+b x^4\right )^{3/4}} \]

[Out]

5/6*b*x^2*(b*x^4+a)^(1/4)-1/2*(b*x^4+a)^(5/4)/x^2+5/6*a^(3/2)*(1+b*x^4/a)^(3/4)*(cos(1/2*arctan(x^2*b^(1/2)/a^
(1/2)))^2)^(1/2)/cos(1/2*arctan(x^2*b^(1/2)/a^(1/2)))*EllipticF(sin(1/2*arctan(x^2*b^(1/2)/a^(1/2))),2^(1/2))*
b^(1/2)/(b*x^4+a)^(3/4)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {281, 283, 201, 239, 237} \begin {gather*} \frac {5 a^{3/2} \sqrt {b} \left (\frac {b x^4}{a}+1\right )^{3/4} F\left (\left .\frac {1}{2} \text {ArcTan}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{6 \left (a+b x^4\right )^{3/4}}+\frac {5}{6} b x^2 \sqrt [4]{a+b x^4}-\frac {\left (a+b x^4\right )^{5/4}}{2 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^4)^(5/4)/x^3,x]

[Out]

(5*b*x^2*(a + b*x^4)^(1/4))/6 - (a + b*x^4)^(5/4)/(2*x^2) + (5*a^(3/2)*Sqrt[b]*(1 + (b*x^4)/a)^(3/4)*EllipticF
[ArcTan[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(6*(a + b*x^4)^(3/4))

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 237

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[b/a, 2]))*EllipticF[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 239

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Dist[(1 + b*(x^2/a))^(3/4)/(a + b*x^2)^(3/4), Int[1/(1 + b*(x^2
/a))^(3/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 283

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1
))), x] - Dist[b*n*(p/(c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^4\right )^{5/4}}{x^3} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {\left (a+b x^2\right )^{5/4}}{x^2} \, dx,x,x^2\right )\\ &=-\frac {\left (a+b x^4\right )^{5/4}}{2 x^2}+\frac {1}{4} (5 b) \text {Subst}\left (\int \sqrt [4]{a+b x^2} \, dx,x,x^2\right )\\ &=\frac {5}{6} b x^2 \sqrt [4]{a+b x^4}-\frac {\left (a+b x^4\right )^{5/4}}{2 x^2}+\frac {1}{12} (5 a b) \text {Subst}\left (\int \frac {1}{\left (a+b x^2\right )^{3/4}} \, dx,x,x^2\right )\\ &=\frac {5}{6} b x^2 \sqrt [4]{a+b x^4}-\frac {\left (a+b x^4\right )^{5/4}}{2 x^2}+\frac {\left (5 a b \left (1+\frac {b x^4}{a}\right )^{3/4}\right ) \text {Subst}\left (\int \frac {1}{\left (1+\frac {b x^2}{a}\right )^{3/4}} \, dx,x,x^2\right )}{12 \left (a+b x^4\right )^{3/4}}\\ &=\frac {5}{6} b x^2 \sqrt [4]{a+b x^4}-\frac {\left (a+b x^4\right )^{5/4}}{2 x^2}+\frac {5 a^{3/2} \sqrt {b} \left (1+\frac {b x^4}{a}\right )^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{6 \left (a+b x^4\right )^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 52, normalized size = 0.53 \begin {gather*} -\frac {a \sqrt [4]{a+b x^4} \, _2F_1\left (-\frac {5}{4},-\frac {1}{2};\frac {1}{2};-\frac {b x^4}{a}\right )}{2 x^2 \sqrt [4]{1+\frac {b x^4}{a}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^4)^(5/4)/x^3,x]

[Out]

-1/2*(a*(a + b*x^4)^(1/4)*Hypergeometric2F1[-5/4, -1/2, 1/2, -((b*x^4)/a)])/(x^2*(1 + (b*x^4)/a)^(1/4))

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {\left (b \,x^{4}+a \right )^{\frac {5}{4}}}{x^{3}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^4+a)^(5/4)/x^3,x)

[Out]

int((b*x^4+a)^(5/4)/x^3,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(5/4)/x^3,x, algorithm="maxima")

[Out]

integrate((b*x^4 + a)^(5/4)/x^3, x)

________________________________________________________________________________________

Fricas [F]
time = 0.08, size = 15, normalized size = 0.15 \begin {gather*} {\rm integral}\left (\frac {{\left (b x^{4} + a\right )}^{\frac {5}{4}}}{x^{3}}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(5/4)/x^3,x, algorithm="fricas")

[Out]

integral((b*x^4 + a)^(5/4)/x^3, x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.62, size = 32, normalized size = 0.33 \begin {gather*} - \frac {a^{\frac {5}{4}} {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{4}, - \frac {1}{2} \\ \frac {1}{2} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{2 x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**4+a)**(5/4)/x**3,x)

[Out]

-a**(5/4)*hyper((-5/4, -1/2), (1/2,), b*x**4*exp_polar(I*pi)/a)/(2*x**2)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(5/4)/x^3,x, algorithm="giac")

[Out]

integrate((b*x^4 + a)^(5/4)/x^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,x^4+a\right )}^{5/4}}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^4)^(5/4)/x^3,x)

[Out]

int((a + b*x^4)^(5/4)/x^3, x)

________________________________________________________________________________________